
From Traditional Keyword Search to
AI-Powered Search: Our Journey
Jon Vivers, Meet Parekh, Jason Taylor
24th April 2025

Confidential

● Introduction
● Why we took search inhouse
● Understanding search traffic &

measuring the search journey
● Search Infrastructure
● Offline testing
● Traditional Search

○ Browse
○ Identifier
○ Simple keyword search

● AI-powered enhancements
○ Head term reranking
○ Semantic expansion
○ Type ahead

● Advanced AI capabilities
○ LTR
○ KNN
○ Content enhancement

● Conclusion & Takeaways
● Impact

Introduction

As an online retailer specializing in industrial supplies, Zoro has a massive catalog with millions of SKUs.
Helping customers quickly find the right product is critical to increasing conversions and ensuring a seamless
shopping experience. Zoro leverages AI-powered search and discovery technologies to optimize this process.

Our product catalog currently exceeds 14M skus across 30 verticals

We are experiencing rapid growth.

Why we took Search In-House

Limitations of Third-Party Search Providers:

● Lack of control over relevance ranking – Couldn’t fine-tune search results for different
customer needs.

● Limited ability to innovate – Feature development was dependent on the vendor’s roadmap.
● Generic algorithms – Not optimized for identifier-heavy and B2B search behaviors.
● Data insights locked away – Couldn’t fully leverage user behavior data for relevance

improvements.
● Inability to scale to larger catalog sizes - Most 3rd party providers were unable /

inexperienced with large catalogs

Why an In-House Solution?

● Full control over ranking & relevance – Adjust search ranking based on business priorities.
● Customization for our specific use case – Support identifier search, typeahead, and AI-driven

personalization.
● Ability to integrate AI & ML models – Reranking, semantic expansion, LTR, and KNN search.
● Leverage our own behavioral data – Optimize based on real customer interactions.
● Cost efficiency in the long run – Reduce reliance on expensive third-party search services.

Transitioning from a third-party search provider to an in-house search solution was a strategic decision driven by the need for greater
control, flexibility, scale and innovation in search relevance and user experience.

Understanding Search Traffic & Measuring the
Search Journey

To optimize search performance, we must first understand user behavior. This requires segmenting
search traffic and capturing key data points at every stage of the search journey.

Data Collection Traditional Search AI enhancements AI powered

Understanding
Search Traffic
While shoppers rarely follow a straight path from search to purchase, they often fall into identifiable behavior
loops. By analyzing these recurring patterns — like bouncing between search and product pages or abandoning
carts — we can optimize the search experience to reduce friction, guide intent, and increase conversions.

Search Product Add to
Cart Purchase

exit

Query Segmentation

Search
Infrastructure
(simplified)

ETL

Where we started: Elasticsearch Backbone

● Chosen for its flexibility, performance, and ecosystem support
● Powers all core search functionality: keyword search, KNN, ranking

Modular Indexing Pipelines

● Ingest product data from multiple sources (PIM, CMS, ERP)
● Normalize, enrich, and structure content before indexing
● Enables fast reindexing for experimentation & feature toggles

Query Processing Layer

● Custom middleware parses and routes queries based on intent
● Injects context like ranking signals, feature flags, test legs

Product data

ETL

Behavioral data

Where we are now: ELT v’s ETL

● By taking an ‘ELT’ approach we were able to fully utilize the power of our data
lake and BigQuery in order to simplify and streamline adding features to our
index

● Consolidating to elasticSearch as a feature store (in addition to a query engine)
standardized our production processes

Product & behavioral data

Offline testing

What Is Offline Relevance Testing?
● A controlled, reproducible method to evaluate search performance using a fixed dataset of

queries and labeled relevance judgments.
● Lets us test ranking changes, model updates, and query rewrites in isolation.
● Complements online A/B testing by offering faster iteration and lower risk.

Key Inputs for Offline Testing
● Query Set: A representative sample of real customer searches.
● Judgments (Labels): Relevance scores for query–document pairs, gathered via:

○ Human annotation
○ Click/engagement-based heuristics (e.g., position-normalized clicks)

● Ranking Outputs: Results from baseline and candidate models for side-by-side comparison.

Common Evaluation Metrics
● NDCG (Normalized Discounted Cumulative Gain): Rewards placing relevant items higher.
● Precision @ K / Recall @ K: Measures relevance coverage in the top K results.
● MRR (Mean Reciprocal Rank): Highlights how quickly the first relevant result is shown.

Why It’s Valuable
● Faster iteration cycles than A/B testing
● Safe testing ground for experimental models
● Better targeting of relevance improvements
● Useful for training and validating Learning to Rank (LTR) models

Best Practices
● Keep query sets diverse and updated regularly.
● Use a mix of critical, head, and long-tail queries.
● Make sure your judgement sets reflect your search segments
● Balance human-labeled and implicit feedback-derived relevance judgments.
● Pair offline results with online validation (A/B or shadow testing) before deployment.

BQ
judgme
nt set

Scheduled click
mode
Unit testing (part #
searches)
HRT data sets
Any other daa

Cloud
run

Elastic
index

BQ
experim

ent
results

Looker
dashboards

Stat: # of
offline
experiment
s

Offline Testing

Offline testing is a reproducible, low-risk method for
evaluating the relevance of search results using a fixed
set of queries and labeled judgments—without needing
live user traffic

Key requirements of offline testing

● Directional consistency with A/B test results in
production.

● Diagnostic, it must help uncover opportunities
● Repeatable
● Observable

Confidential

Offline Testing: Ingredients

1. Judgements
● Click ratings - Update on fixed cadence.
● Human annotation
● Synthetic data
● LLM as Judges etc.

2. Judgement Sets
● Targeting particular strata (e.g. head terms,

brand queries, identifier queries etc.)
● Mixed - replicating proportion we find in

production is best way to replicate results in
offline testing.**

● Update Judgement Sets regularly**
3. Evaluation

● Metrics: nDCG, Precision, Recall, MRR, ERR
● Evaluation Views

BQ judgment
set

Scheduled click
model
Unit testing (part
searches)
HRT data sets
Any other data

Cloud
run

Elastic index

BQ
experiment

results

Looker dashboards

This last two weeks:

72 experiments

550k queries

19M results

Confidential

Offline Testing: Evaluation Views
Bigger Picture Comparison View

Fine Grained View

Confidential

Offline Testing: Value
1. Rapid Feedback Loops:

● Allows quicker evaluation of new models
● Supports fast iteration, reducing time between idea and impact

2. Deep Dive Diagnostics
● Helps capture finer nuances in model.
● Side-by-side comparisons surface specific strengths or weaknesses

3. Isolation of Problems
● Enables creation of targeted judgment sets.
● Isolate performance across query types.

4. Less Expensive than A/B Testing
● Doesn’t require traffic splits or statistical wait times.
● Valuable for early stage model testing or validating improvements.

Offline Testing:
Impact

● Get winning models to production faster

● Capture deeper insights into model performance

● Drive continuous, confident improvements in
search relevance

Traditional Keyword Search – Our Starting Point
We began our journey with a traditional keyword-based
search system – a solid but limited start.

🔍 How It Worked
● Lexical matching (exact/partial)
● Ranked by BM25 + product popularity
● Deterministic results

✅ What It Did Well
● Great for SKUs, MPNs (Our bread and butter)
● High return on effort: easy to implement, fast, predictable, and

easy to debug

⚠ Where It Fell Short
● No synonym/intent understanding
● No learning from behavior
● Fragile — typos = zero results

Impact: parity with 3rd party provider

Keyword approach

Analyzers (Understanding our most frequent search
patterns)

● Min-length filters to reduce false part number
matches

● Stop tokens to suppress brand stuffing in part
numbers

● Regex-based measurement normalization (e.g., 10 ft
↔ 10')

📄 Why It Matters - These foundational techniques gave us robust recall and cleaner inputs — a critical launchpad for
layering in AI.

Tf/ Field Norms (Optimizing scoring for our unique index content)
● TF / IDF with norms is biased towards shorter text.

Separating Ranking and Recall (Decoupling our Query Plan)
● This helped in isolating recall vs precision problem for us.

10 ft air hose -> 10-235-523

Milwaukee 0882 -> Milwaukee 0882-20

Keyword Search:
Impact

● Removes Noise from Signals (better for training
models)

● Less results (with same Recall) = Faster LTR +
Vector Search models

AI-Powered
enhancements

AI is transforming search from static keyword matching to a dynamic, intelligent system that understands
intent, reranks results, and expands queries for better recall and relevance.

Data Collection Traditional Search AI enhancements AI powered

Semantic Expansion with Synonyms
Using a combination of subject matter expertise from our Merchandisers and observed
search behavior, we can productionize synonyms in a targeted manner to blunt the
impact of common search errors

Start simple
● Find all queries that just differs in space or one character.
● Triage with SMEs to solicit reported errors or industry jargon

Sequential Searches (capturing patterns)
● Subsequent searches within same session differing in 1

character

Semantic Expansion with Synonyms

More advanced models (cart query
expansion)

I need something
to cut

lumber attached
to nails. Oh I know

my friend has it,
it's called
“Sawzall”

Sawzall

Semantic Expansion with Synonyms
More advanced models - generating
synonyms with LLMs

These simple techniques generated
over 11k synonyms and reduced our
zero result rate by 40%

Term Association Models (feedback loops)

Using past success to bootstrap future success

Term Association Model Usage
● We observe how users search for our products, which

terms lead to conversions and which terms don’t
● Put our thumbs on the scale and boost or deboost

products based on successful or unsuccessful
searches

Continuous Retraining of Association Models (Create
feedback loops)

● As our customers search more, our models learn
stronger positive and negative associations with
products

Positive: 8-32 machine screw
Negative: screws

Type Ahead / Related Searches

Now that we’ve identified keywords as a core entity in
how users express intent, we can build systems that
learn from successful search behavior to guide future
searches.

● Elevate keyword suggestions that
consistently convert

● Promote intent-rich, high-performing terms
● Break complex searches into modular,

reusable keyword chunks
● Merge similar or redundant queries to reduce

noise
● Ensure clean, consistent typeahead

experiences

Advanced AI Capabilities in Search

After laying the groundwork with basic AI enhancements, we expanded into more advanced, machine
learning–driven techniques to further improve relevance, recall, and user experience.

Data Collection Traditional Search AI enhancements AI powered

Query Understanding

Building General Associations
● Transformer Models (BERT) to find semantic

associations between search terms and key product
attributes like brands or categories

● Use to enrich queries or propagate model predictions
to the frontend to power smart faceting

Developing models to find broader associations from query strings to other targets

Learn To Rank

Why it matters to us:

● Semantic and lexical signals alone aren’t good enough
● Signal explosion (we have a lot of ranking signals)
● Ranking signals are strong
● Interpretable/explainable features

How we use it:

● Trained on click model targets
● Includes query features, document features, and

query-document features
● Continuously retrained to adapt to changing behavior

Impact: Significant lift in click-through rate and
engagement on top-ranked results.

kNN - Vector Search

Why it matters: Our customers don’t always use precise language
and learned synonyms have a cold start problem—vector search
helps find semantically relevant results, not just textual matches,
using kNN score allows us to inject semantics into ranking features

How we use it:

● Bi-encoder configuration: embed queries and product
representations in same vector space

● ANN search to find products similar to the query
● Used as supplement to keyword search for recall and as a

ranking signal in LTR

Impact: Increased recall and relevance for vague, long-tail, or many-token natural
language queries

Content Enrichment Using LLMs – Fueling Better Matching

What it is: Using large language models (LLMs), to enhance
product content for improved discoverability and search
experience.

Why it matters: Better data = better search relevance, better filters,
better user experience.

How we use it:
● Normalize inconsistent product data
● Enhance titles and descriptions for better search term

match
● Fill in missing metadata to enable better filtering and

retrieval

GP Mtr, Split Ph, ODP, 1/2
HP, 1725 rpm, 48

1/2 HP General Purpose (GP) Motor, Split Phase, Open
Drip Proof (ODP), 1725 RPM, 48 Frame

Impact:
1. Improved Faceting - 250 bps increase in facet usage
2. Better Recall

What We’ve Learned from a Year of Improving Search
🛡 1. Bot Traffic Distorts Everything
Bots can heavily skew behavioral data, and it’s more than a reporting problem. If you're not filtering them out, you’re optimizing for fake users. Invest in
strategies that let you focus on real customer behavior.

🧰 2. Simplify Your Stack
The best search teams focus on relevance, not racking up infrastructure complexity. Streamlining lets you iterate faster and stay focused on what actually
matters.

⚡ 3. Quick Wins Matter
Sometimes a simple solution really is good enough. Taking the easy wins early helps reduce scope, deliver immediate value, and build momentum.

📈 4. Start Simple, Add Complexity Later
Early solutions don’t need to be perfect — they need to teach you something. Simpler approaches get results and deepen your team’s understanding of the
problem space.

🧪 5. Offline Testing Is a Superpower
Online testing time is precious. Build a strong offline testing pipeline so you can experiment fast and save your online cycles for the changes that really move
the needle.

🚨 6. But Don’t Over-Rely on Offline Tests
Offline testing isn’t gospel. Click-based judgment sets only work if the right results are visible to begin with. Sometimes a test fails offline — and still wins
with customers. Be ready to trust your instincts and ship anyway.

🔁 7. Test Everything
No exceptions. If it touches the customer, it gets tested.

Impact

